Semicarbazide-sensitive amine oxidase activation promotes adipose conversion of 3T3-L1 cells.

نویسندگان

  • N Mercier
  • M Moldes
  • K El Hadri
  • B Fève
چکیده

Semicarbazide-sensitive amine oxidase (SSAO) is an amine oxidase related to the copper-containing amine oxidase family. The tissular form of SSAO is located at the plasma membrane, and is mainly expressed in vascular smooth muscle cells and adipocytes. Recent studies have suggested that SSAO could activate glucose transport in fat cells. In the present work, we investigated the potential role of a chronic SSAO activation on adipocyte maturation of the 3T3-L1 pre-adipose cell line. Exposure of post-confluent 3T3-L1 pre-adipocytes to methylamine, a physiological substrate of SSAO, promoted adipocyte differentiation in a time- and dose-dependent manner. This effect could be related to SSAO activation, since it was antagonized in the presence of the SSAO inhibitor semicarbazide, but not in the presence of the monoamine oxidase inhibitor pargyline. In addition, methylamine-induced adipocyte maturation was mimicked by 3T3-L1 cell treatment with other SSAO substrates. Finally, the large reversion of methylamine action by catalase indicated that hydrogen peroxide generated by SSAO was involved, at least in part, in the modulation of adipocyte maturation. Taken together, our results suggest that SSAO may contribute to the control of adipose tissue development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of semicarbazide-sensitive amine oxidase expression by tumor necrosis factor-alpha in adipocytes: functional consequences on glucose transport.

Membrane-associated semicarbazide-sensitive amine oxidase (SSAO) is mainly present in the media of aorta and in adipose tissue. Recent works have reported that SSAO activation can stimulate glucose transport of fat cells and promote adipose conversion. In this study, the murine 3T3-L1 preadipose cell line was used to investigate SSAO regulation by tumor necrosis factor-alpha (TNF-alpha), a cyto...

متن کامل

Amine oxidase substrates mimic several of the insulin effects on adipocyte differentiation in 3T3 F442A cells.

We have previously reported that substrates of monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) exert short-term insulin-like effects in rat adipocytes, such as stimulation of glucose transport. In the present work, we studied whether these substrates could also mimic long-term actions of insulin. Adipose differentiation of 3T3 F442A cells, which is highly insulin-depend...

متن کامل

Substrates of semicarbazide-sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells.

It has been shown that the combination of benzylamine or tyramine and low concentrations of vanadate markedly stimulates glucose transport in rat adipocytes by a mechanism that requires semicarbazide-sensitive amine oxidase (SSAO) activity and H(2)O(2) formation. Here we have further analysed the insulin-like effects of the combination of SSAO substrates and vanadate and we have studied the sig...

متن کامل

Oral Administration of Semicarbazide Limits Weight Gain together with Inhibition of Fat Deposition and of Primary Amine Oxidase Activity in Adipose Tissue

An enzyme hitherto named semicarbazide-sensitive amine oxidase (SSAO), involved in the oxidation of primary amines, is abundantly expressed in adipocytes. Although SSAO physiological functions remain unclear, several molecules inhibiting its activity have been described to limit fat accumulation in preadipocyte cultures or to reduce body weight gain in obese rodents. Here, we studied whether or...

متن کامل

Regulation of Semicarbazide-Sensitive Amine Oxidase Expression by Tumor Necrosis Factor- in Adipocytes: Functional Consequences on Glucose Transport

Membrane-associated semicarbazide-sensitive amine oxidase (SSAO) is mainly present in the media of aorta and in adipose tissue. Recent works have reported that SSAO activation can stimulate glucose transport of fat cells and promote adipose conversion. In this study, the murine 3T3-L1 preadipose cell line was used to investigate SSAO regulation by tumor necrosis factor(TNF), a cytokine that is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 358 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001